Naringenin attenuates fibroblast activation and inflammatory response in a mechanical stretch-induced hypertrophic scar mouse model

نویسندگان

  • Shengzhou Shan
  • Yifan Zhang
  • Min Wu
  • Bo Yi
  • Jing Wang
  • Qingfeng Li
چکیده

The pathogenesis and therapy of hypertrophic scars (HS) have not yet been established. The aim of the present study was to investigate the potential effect of naringenin on HS and its underlying mechanisms. The mouse model of HS was prepared by a mechanical stretch device and then treated with naringenin at various concentrations. Histological studies were performed to evaluate scar hypertrophy by hematoxylin and eosin, as well as Masson's trichrome staining. The activation of HS fibroblasts was determined based on reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), western blotting and immunohistochemical staining. Following observing the retention of inflammation cells by immunohistochemistry, the cytokines, including tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β, IL‑6 and transforming growth factor (TGF)‑β1, mRNA and protein levels were quantitated by RT‑qPCR, ELISA and western blotting methods. As a result, naringenin significantly inhibited the formation of HS in a concentration‑dependent manner. In addition, naringenin inhibited fibroblast activation and inflammatory cell recruitment. In addition, mRNA and protein expression levels of TNF‑α, IL‑1β, IL‑6 and TGF‑β1 were downregulated following naringenin treatment. The current study highlighted a new pharmacological activity of naringenin on HS. The mechanism of action of naringenin was associated with the inhibition of fibroblast activation and local inflammation. These results suggested that naringenin may serve as a novel agent for treatment of HS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppressive effects of induced pluripotent stem cell-conditioned medium on in vitro hypertrophic scarring fibroblast activation

Hypertrophic scarring (HS) is a type of fibrosis that occurs in the skin, and is characterized by fibroblast activation and excessive collagen production. However, at present, therapeutic strategies for this condition are ineffective. Previous studies have identified that the mutual regulation of chronic inflammation, mechanical force and fibroblast activation leads to the formation of HS. Indu...

متن کامل

P 106: Effects of Dimethyl Sulfoxide on NLRP3 Inflammasome and Alzheimer\'s Disease

Alzheimer's disease (AD), the most ordinary form of dementia and extracellular accumulation of Amyloid-β (Aβ) in senile plaques, is an important and a main event in the pathogenesis of AD. Deposition of Aβ Peptide initiates a spectrum of cellular responses that are interposed by the resident neuroimmune cells of the brain, the microglia. Recently, a novel inflammasome signaling&n...

متن کامل

Naringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-κB activation in vivo and in vitro

Objective(s): Naringin, an essential flavonoid, inhibits inflammatory response and oxidative stress in diabetes. However, whether naringin has beneficial effects on diabetic retinopathy (DR) remains unknown. Materials and Methods: Streptozotocin (STZ, 65 mg/kg) was intraperitoneally injected into male rats (8 weeks old weighting 200-250 g) to establish diabetic model, then naringin (20, 40 or 8...

متن کامل

P-96: Mechanical Activation of Parthenogenesis in Mouse Oocytes Using Hydrostatic Pressure

Effective protocols are introduced for parthenogenesis activation in oocytes. Hydrostatic pressure can act as a mechanical stimulator that rearranges egg contents, leading to new structural or molecular combination. Alternatively, mechanical stimulation could stimulate a mechanically-gated process, such as opening or closing of stretch activated ion channels. This study, investigated the use of...

متن کامل

BMP-7 suppresses excessive scar formation by activating the BMP-7/Smad1/5/8 signaling pathway

Scarring is the inevitable consequence of wound repair, which may cause significant physical and mental pain to patients when excessive. Bone morphogenetic protein‑7 (BMP‑7) has been proved to inhibit TGF‑β‑induced fibrosis in various tissues including dermal papilla cells. However, the effect of BMP‑7 on hypertrophic scarring, a common proliferative disorder of dermal fibroblasts, has not been...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017